Sheet 3

Q1:- Let A, B, C, D, E be subsets of the Euclidean space \mathbb{R}^{2}. Find their boundary, their interior, and their exterior. Conclude from here whether these sets are open, closed, or neither.
a) $A=\left\{x \in \mathbb{R}^{2} \mid d_{2}\left(x, x_{0}\right) \leq 2\right\}$, where $x_{0} \in \mathbb{R}^{2}$.
b) $B=\mathbb{R} \times[a, b)$, where $a, b \in \mathbb{R}, a<b$.
c) $\mathrm{C}=(\mathrm{a}, \mathrm{b})^{2}=(\mathrm{a}, \mathrm{b}) \times(\mathrm{a}, \mathrm{b})$, where $\mathrm{a}, \mathrm{b} \in \mathbb{R}, \mathrm{a}<\mathrm{b}$.
d) $\mathrm{D}=\{\mathrm{a}\} \times[\mathrm{b}, \mathrm{c})$, where $\mathrm{a}, \mathrm{b}, \mathrm{c} \in \mathbb{R}, \mathrm{b}<\mathrm{c}$.
e) $E=\{a\} \times\{b, c\}$, where $a, b, c \in \mathbb{R}, b \neq c$.

Remark: In this problem, it is sufficient to sketch the set and to give the correct answers without justification.

Q2:- In the Euclidean space \mathbb{R}^{3}, find the set

$$
A=\bigcap_{n=1}^{\infty}\left[-1-\frac{1}{n}, 2+\frac{1}{n}\right] \times\left[-\frac{1}{n^{2}}, \frac{1}{n^{2}}\right] \times\left[0, e^{-n}\right] .
$$

Is this set open, closed, or neither?
Q3:- Let (X, d) be a discrete metric space and let $x_{0} \in X$ be a point. Describe the open ball $B_{r}\left(x_{0}\right)$ where (a) $0<r \leq 1$. (b) $r>1$. (c) $r>1$ and $r \neq 0$

Q4:- Consider the following sets

1. $A_{n}=\left[\frac{1}{n}, \infty\right) \quad$ closed for each $n=1,2, \cdots$. However, $\cup_{n=1}^{\infty} A_{n}=$
2. $B_{n}=\left[\frac{1}{n}, 1-\frac{1}{n}\right]$ closed for each $n=1,2, \cdots$. However, $\cup_{n=1}^{\infty} B_{n}=$
3. $C_{n}=\left[\frac{1}{n}, 1\right] \quad$ closed for each $n=1,2, \cdots$. However, $\cup_{n=1}^{\infty} C_{n}=$
4. $D_{n}=[-n, n] \quad$ closed for each $n=1,2, \cdots$. However, $\cup_{n=1}^{\infty} D_{n}=$

What can you conclude from the union of the above sets?

Q7:- In the Euclidean space \mathbb{R}^{2}, find the closure of the following sets:
(i) $\mathrm{A}=[\mathrm{a}, \mathrm{b}) \times(\mathrm{a}, \mathrm{b}]$, where $\mathrm{a}, \mathrm{b} \in \mathbb{R}, \mathrm{a}<\mathrm{b}$.
(ii) $B=[\mathrm{a}, \mathrm{b}) \times \mathrm{Q}$, where $\mathrm{a}, \mathrm{b} \in \mathbb{R}, \mathrm{a}<\mathrm{b}$.

